CBCS SCHEME

USN 17E)

First/Second Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Basic Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Draw and explain the V-I characteristics for silicon and germanium diode. (08 Marks) 1
 - Define the following diode parameters:
 - Knee voltage i)
 - ii) Minimum forward current
 - iii) Reverse breakdown voltage
 - iv) Peak inverse voltage. (08 Marks)
 - c. Derive the relationship between α and β . A certain transistor has $\beta = 200$ and base current is 50µA. Determine the collector current and α . (04 Marks)

OR

- With a neat diagram, explain the input and output characteristics of a transistor in common emitter configurations.
 - With neat circuit diagram and waveform, explain the working of full wave bridge rectifier. (08 Marks)
 - Explain Zener diode voltage regulator circuit.

(04 Marks)

Module-2

- What is DC load line? Explain with neat circuit the operation of voltage divider bias circuit. 3 (08 Marks)
 - Explain the characteristics of an ideal op-amp in detail.

(08 Marks)

c. Explain the base bias circuit.

(04 Marks)

OR

Explain investing and non-inverting optional amplifiers.

(08 Marks)

b. Explain the inverting summing amplifier with neat circuit diagram. Calculate the output voltage of three input inverting summing amplifier having:

$$R_1 = 200 K\Omega$$

$$R_1 = 200 K \Omega$$
 $R_2 = 250 K \Omega$ $R_3 = 500 K \Omega$ $V_1 = -2 V$ $V_2 = -1 V$ and $V_3 = +3 V$.

$$R_3 = 500 \text{K}\Omega$$
 $R_f = 1 \text{M}\Omega$,

(08 Marks)

c. Draw the base bias circuit using a silicon transistor with $\beta = 50$, $R_B = 100 \text{K}\Omega$. $R_C = 1 \text{k}\Omega$ and $V_{CC} = 10V$. Find the values of I_C and V_{CE} . (04 Marks)

Module-3

State and prove the De – Morgan's theorem. 5

(06 Marks)

Explain the full adder circuit with truth table.

(06 Marks)

c. Convert the following:

$$(49.5)_{10} = (?)_{16}$$

$$(1062.403)_8 = (?)_{10}$$

$$(642.71)_8 = (?)_2$$

$$(734)_{10} = (?)_2$$

(08 Marks)

		OR	
6	a.	Realize AND, OR and NOT gates using universal gates.	06 Marks)
U	b.	Simplify the given Boolean equation: $y = (A + \overline{B}) \cdot (CD + E)$ and realize using NAI	ND gates
	٠.		06 Marks)
	c.	only. Perform the subtraction with the following binary numbers using 1's and 2's con-	mpliment
		method.	
		i) $(10010)_2 - (10011)_2$	
		ii) $(10010)_2 - (10000)_2$	08 Marks)
		11) (11010)2 (2000)2	
		Module-4	
7	a.	Explain clocked R-S flip-flop and R-S flip-flop with its logic diagram, logic sys	mbol and
•	٠.	touth table	IU Marks)
	b.	Explain the architecture of 8051 microcontroller with block diagram in detail. (10 Marks)
		OR	. 1
8	a.	With the help of block diagram, explain the microcontroller based stepper motor	or control
		system /	(08 Marks)
	b.	Explain NAND gate and NON gate laten with logic diagrams	(08 Marks) (04 Marks)
	c.	Compare microcontroller and micro processor.	U4 Marks)
		Module-5	(10 Marks)
9	a.	Explain the construction and working of E . E .	(10 Marks) (04 Marks)
	b.	Explain elements of communication system with order	(04 Marks)
	c.	List the differences between amplitude modulation and frequency modulation.	(OO IVILLIANO)
		COP.	
		OR	ns
10	a.	Define amplitude modulation. Derive mathematical expression and draw waveform	(08 Marks
	b.		(06 Marks
	c.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(06 Marks
	٠.	DAPIGHT the frequency mountains	